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ABSTRACT 

Acoustic ‘windows’ are used in SONAR applications to absorb structural loads 

associated with the platform operation while allowing the passage of acoustic signals. 

The performance metric commonly used to gauge the acoustic window quality is 

insertion loss. This thesis provides a derivation of insertion loss for multi-layered 

materials as a function of frequency and angle of incidence. Derivations are modified to 

include attenuation of the signals in the material and the result has been written into a 

MATLAB model. Measurements on single layer plastic, polyurethane and steel panels 

show good experimental agreement with the theoretical model. The model is then used to 

predict insertion loss of multiple layers as a tool for improving window bending rigidity. 
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I. INTRODUCTION  

A. ACOUSTIC WINDOWS 

Acoustic ‘windows’ and ‘domes’ are used in Naval and commercial applications 

to protect associated underwater acoustic transducers and hydrophones from afloat debris 

and hydrodynamic loads, as well as to streamline the structure exposed to flow loads 

thereby reducing flow noise. Windows are mounted in the frame of the hull, typically 

positioned a few inches in front of the transducer/hydrophone which is in turn mounted in 

a flooded seachest. Tradeoffs must be made between required mechanical properties that 

support operational loads, and a need for optimal acoustic performance. These two 

requirements are typically mutually exclusive.  

1. Operational Loads  

Operational loads fall into two categories: structural and environmental.  

Structural loads are typically considered in terms of normal pressures applied to 

the surface of the window. Such loads are caused by either hydrodynamic forces 

associated with the speed of the platform, or ‘wave slap’ applied to stationary platforms. 

Although stress in the material is a consideration, a larger concern is the displacement or 

strain of the window caused by bending under these loads. Significant changes in 

geometry caused by hydrodynamic loads, may degrade the streamlining of the window or 

dome shape which in turn could lead to unintended load and flow noise as well as cause 

damage to the window’s associated transducer. Displacements should therefore be 

minimized.  

Environmental loads are in the form of external operating conditions such as 

temperature, hydrostatic pressure and long term seawater immersion. Windows must 

operate typically over a temperature range from 0-40°C, with structural stability required 

over the larger range of -40°C to 60°C. Many materials experience changes in critical 

material properties, such as strength, density, damping and elastic moduli, as functions of 
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temperature. Further changes are known to occur if water is absorbed by the material. 

Additionally, some materials experience significant dimensional (thickness) changes 

under hydrostatic load. Successful designs must consider and address all of these factors 

in optimizing the acoustic properties of windows employed.  

2. Acoustic Performance 

Acoustic performance of the window has a direct impact on the associated 

SONAR system performance. Ideally, acoustic signals scattered from a target should pass 

through the transducer window unchanged. In practice, signal strength varies as a 

function of the frequency and the incidence angle of the signal. Degradation of the former 

reduces the range at which targets can be identified by reducing the signal to noise ratio 

of the system, while uncertainty in the latter may cause ambiguity of target direction. 

These effects can be demonstrated by considering a simple line array.  

Ziomek [1] derives the normalized far field directivity (DN) function for a line 

array using the spatial Fourier transform of the complex aperture function, A(f,xa), 

defined as the complex signal produced by the array in response to a plane wave at the 

spatial location xa and at the frequency f. For the case of spatial elements with identical 

response, A(f,xa) is defined as a “rectangular” (constant) amplitude window function, and 

the spatial Fourier transform produces a sinc directivity function, i.e., 

 

 

Equation 1.  Line array directivity function 

When an acoustic window is in the signal path, the aperture function used in the 

derivation of the directivity function should be modified as follows to account for the 

amplitude changes as a function of incidence angle:  

DN = sinc ( s sin ϕ ) 
 

s = array length/wavelength 
 ϕ = angle of incidence 

measured from the normal 
to the interface surface. 
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Equation 2.  Modified aperture function 

The resulting directivity function would then be the sinc function of Equation 1 

scaled by F(ϕ). The scaling function turns out to be equivalent to the square root of the 

intensity transmission coefficient ( Γ ) metric, defined as the ratio of acoustic intensity 

transmitted to the intensity that was incident [2]. Figure 1 and Figure 2 demonstrate the 

effect of scaling the sinc function by, in this case, the square root of the intensity 

transmission coefficient of a steel plate with an observed significant sidelobe level 

increase.  
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Figure 1.  Intensity transmission coefficient for steel plate (1 cm thick) at 250kHz. 
Angles are measured from normal to the interface. 

A (f, xa) → A (f, xa,ϕ) = rect (xa /L) F(ϕ) 
 

L = length of aperture 
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Figure 2.  Directivity function for a line array for s =10 positioned behind a steel 
plate (1 cm thick) at 250kHz. 

A widely used metric to gauge window performance is ‘insertion loss,’ defined as 

the logarithmic ratio of sound intensity at a fixed location with and without the window 

in the path of the sound wave [3].  

 

 

Equation 3.  Typical insertion loss definition 

Typical insertion loss levels on naval acoustic windows is 2dB or less. Using an 

electrical impedance analogy, a characteristic impedance, defined as the product of the 

material density (ρ) and the material sound speed (c), is commonly compared with the 

characteristic impedance of seawater as an indicator of window material performance. A 

second indicator is the ratio of material characteristic dimension to the wavelength. 

Ratios of characteristic dimensions of the window to wavelength that are much less than  

 

 

Insertion Loss = 20 log10 [P1/ P2] = 10 log10 [1/ Γ] 
 
P1 = Pressure at fixed point without window in signal path 
P2 = Pressure at fixed point with window in signal path. 
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one, produce near acoustic transparency. As such, in many ‘low’ frequency applications, 

materials with poor impedance match to water are still capable of overall satisfactory 

performance. 

B. TYPICAL MATERIALS 

Materials in common use for acoustic windows fall into the categories of rubber, 

polyurethane, fiber reinforced epoxy and engineering plastics. The first two groups, 

rubber and polyurethane, typically have good impedance (ρc) matches to water. Table 1 

lists some common materials along and their associated ratio of characteristic impedance 

to that of water.  

 
Material Density (ρ) 

g/cc 
Longitudinal Sound 

Speed (c ) 
m/s 

(ρc) material / (ρc) water 

Rubber (Buna-n) 0.90  1550  1.0 
Polyurethane  
(PR 1574) 

1.01  1700  1.02 

Plastic 
(Noryl EN-265) 

1.08  2103  1.1 

ALUM ( 6055)  2.7  6300  11 
Steel (A36) 7.7  6100  30 

Table 1.  Characteristic impedance match of common structural materials to water 

As stated above, there are frequency regimes and/or optimization methods 

available that allow the use of ‘poorly’ matched materials in cases where structural 

requirements exclude the use of materials with better impedance matches. Table 2 

demonstrates the mutually exclusive nature of acoustic and mechanical/structural 

properties. Note that materials with good matches (ρc ratio ~1), per Table 1, also have 

relatively poor tensile strength and modulus values. 
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Material Tensile Strength 
(ksi) 

Young’s Modulus1 
(ksi) 

Rubber  (Neoprene WRT) 1.5  0.4  
Polyurethane   (PR 1574) 2  0.8  
Plastic   (Noryl EN-265) 6  390 
ALUM          ( 6055)  40  10000  
Steel             (A36) 36  30000 

Table 2.  Mechanical properties of common structural materials 

Windows with lateral dimensions approaching a wavelength have the added 

complication of exciting flexural waves in the window material. Bounds applied in this 

thesis, described below, will lessen these effects to the point that they may be neglected.  

 
Thesis Bound # Condition  Condition  
1  panel thickness   < 2in.  
2  frequency range  50-250kHz
3  angle of incidence 0-40°  

Table 3.  Thesis Bounds 

C. PREVIOUS WORK 

Research related to the general case of sound propagation through layered media 

is extensive. A detailed list of early work is reported in [4]. Specific examples include 

work by Fay [5] who presented a set of equations to predict transmission loss for a mono-

layer plate, including comparisons of predicted and measured values for a steel plate 

demonstrating reasonable agreement. This simple modeling has been sufficient for many 

applications since mono-layer structures of rubber, polyurethane or plastic have been 

shown to satisfy acoustic and structural requirements in earlier window designs.   

More recently, multi-layer designs have become necessary to meet strength and 

bending requirements unmet by mono-layer design windows. These multi-layered 

windows are considered composites and range from typical fiber reinforced epoxy 

(‘fiberglass’) to custom designs. Fiberglass designs have been acoustically characterized 

                                                 
1 Quasi-static modulus listed. 
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empirically for specific applications and tend to be used for very low (<1) 

thickness/wavelength ratios because acoustic performance of these designs is otherwise 

poor. The nature of these low thickness/wavelength ratios requires lower frequency 

transducers that are typically larger, leading to larger dimensions of window aperture 

requiring in turn increased strength as load pressures need to be applied over a greater 

area. For higher thickness/wavelength ratio applications, customized windows such as 

those described in [6], where a modified epoxy resin is often used with a low density 

fiber (‘Spectra’) resulting in a window with macroscopic density and sound speed that is 

nearly ideal, have been used. Although these newer designs offer similar acoustic with 

improved structural performance relative to mono-layer designs, the ability to 

manufacture consistent quality customized composites has been poor. Recently Goodrich 

Corp. [7] has designed a multi-layered window, called RHO-COR®, that utilizes an 

elastomeric ‘core’ material bounded by layers of composite material and has been shown 

to satisfy acoustic and structural requirements for frequencies up to 50 kHz. A drawback 

is the fact that it is costly relative to mono-layer designs.  
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II. THEORY 

A. SINGLE LAYER NORMAL INCIDENCE  

In the case of normal incidence sound waves passing from water through an 

isotropic, homogeneous solid, all points along the water-solid interface move in phase so 

no shear (transverse) wave is generated and the problem is significantly simplified.  

As presented in [3], the intensity transmission coefficient ( Γ ) for a water bound 

homogeneous material is found to be:  

 

 

Equation 4.  Transmission coefficient for normal incidence case for a water bound 
panel.  

The transmission coefficient is related to the insertion loss as follows 

 

 

Equation 5.  Insertion Loss for normal incidence case of a water bound panel. 

Inspection of Equation 5 reveals the indicators mentioned above. Namely, closely 

matched materials cause the [(ρ2c2 / ρ1c1 ) – (ρ1c1/ ρ2c2) ] term to approach zero, and 

likewise, k2L products near n π/2 for n=0,1 ,2,3…cause the sin term to vanish. Both have 

the effect of causing insertion loss to approach zero which corresponds to “perfect” 

transmission of the acoustic signal. On the other hand, the insertion loss goes to infinity 

as Γ approaches zero, with the physical interpretation in this case that little sound is 

allowed to pass through the material. Figure 3 demonstrates this point. 

        
Γ = | p2

n,transmitted / p2
n,incident | = 1 / [1 + .25( [ (ρ2c2 / ρ1c1 ) – (ρ1c1/ ρ2c2) ]2 sin2 k2Lt ] 

 
where:  ω = 2πf, c1= speed of sound in water 

c2 = speed of sound in material, k2 = ω/c2, Lt= thickness of layer 

Insertion Loss = 10 log10 [1 / Γ ] = 10 log10 [1 + .25( [(ρ2c2 / ρ1c1 ) – (ρ1c1/ ρ2c2)]2 sin2 k2Lt] 
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Figure 3.  Insertion loss v transmission loss 

Such results are useful in the idealized case of pure normal plane wave incidence. 

The more common case is wave incidence that is not strictly normal, and in such 

instances, a shear wave is generated in the solid because points along the water-solid 

interface are not excited in phase. For the off-normal incidence case, a more detailed 

approach that requires an understanding of stress tensors is necessary. 

B. MULTI-LAYER NON-NORMAL INCIDENCE 

1. Stress/Strain Wave Propagation 

Waves in solids can be described as propagations of stress and strain within the 

material. Officer [8] provides a detailed derivation of the governing wave equation in 

solids. Brekhovskikh [9] expands this treatment by considering wave propagation 

through multi-layered solids. In both references, fundamental concepts of stress and 

strain are required as groundwork in the equation derivation. In the following, a short 

derivation of the governing equations is given. 

Stress (T) is defined as the force acting on a given area (δA) divided by that area.  
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Equation 6.  Stress (T) definition 

The stress state at a point in a continuum can be resolved into three traction 

vectors (t1, t2, t3), each acting on a differential area whose normal is one of the three axis.  

 

 

Figure 4.  Traction vectors acting on orthogonal planes of a differential element from 
[10]. 

Each of these three tractions can then be further resolved into three orthogonal 

components. The resulting nine stress components are referred to using the following 

indicial (tensor) notation: Ti j, where i = index of the normal plane, and j is the coordinate 

component of the applied stress. 

 

t1 

t3 

t2 

1 

2 

3 

T = f/δA 
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Figure 5.  Traction vector components acting on a differential element from [10]. 

Before the equations of strain can be formulated, a definition for media 

displacement is required. Therefore, the displacement ui identifies the displacement of a 

point in the i direction. Extensional strain can generally be defined as the relative change 

in position per unit distance. In a simple case, the change in axial length (δui) divided by 

the total length (δx). Shear strain is defined differently, as shown in figure below and in 

Equation 7. 

 

 

Figure 6.  Shear strain definition from [10]. 
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In a similar fashion to stress, the strains are referred to by indicial notation: ε i j. 

 

 

Equation 7.  Strain notation  

The generalized form of Hooke’s law is used to relate each of the nine stress 

components as a linear function of the nine components of strain, each multiplied by a 

‘stiffness’ coefficient, cijkl. Officer’s [8] derivation makes use of symmetries in stress and 

strain tensors identities and equilibrium considerations to reduce the generalized Hooke’s 

law relations to six equations, displayed in Equation 8. A widely used enumeration 

scheme to reduce the number of subscripts on each term is given below.  

 

 

Equation 8. Reduced form of generalized Hooke's law. 

Nye [11] presents strain energy considerations that require cmn = cnm. When 

applied to Equation 8, this reduces the number of independent stiffness coefficients to 21. 

 
T1= c11 ε 1 + c12 ε2 + c13 ε3 + c14 ε4 + c15 ε5 + c16 ε6  
 
T2= c21 ε 1 + c22 ε2 + c23ε3 + c24 ε4+ c25 ε5 + c26 ε6  
 

T3= c31 ε 1 + c32 ε2 + c33 ε3 + c34 ε4+ c35 ε5+ c36 ε6  
 
T4= c41 ε 1 + c42 ε2 + c43 ε3 + c44 ε4+ c45 ε5 + c46ε6  
 
T5= c51 ε 1+ c52 ε2+ c53 ε3 + c54 ε4 + c55 ε5 + c56 ε6  
 
T6= c61 ε 1+ c62 ε2 + c63 ε3 + c64 ε4 + c65 ε5 +c66 ε6  

ε 11 = δu1/δx  ε 22 = δu2/δy  ε 33 = δu3/δz 
 

ε 12 = ε 21 = ½ (δu2/δx + δu1/δy ) 
 

ε 13 = ε 31 = ½ (δu1/δz + δu3/δx ) 
 

ε 32 = ε 23 = ½ (δu3/δy + δu2/δz ) 
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Certain material classes allow these equations to be reduced even further if independence 

of one or more coordinate directions in the medium exists. The table below lists some 

material classes and the number of independent stiffness coefficients. 

 
Crystal Type nsc Material Example 
Triclinic 21 Axinite 
Monoclinic 13 Lithium Sulfate 
Trigonal 6 Quartz 
Hexagonal 5 Piezoelectric ceramic 
Transversely isotropic 5 Unidirectional Layer in Composite Material 
Isotropic  2 Steel, Engineering Polymers, Elastomers 

Table 4.  The number of independent stiffness coefficients (nsc) for various crystal 
types. 

Officer [8] reduces Equation 8 to two independent elastic constants for isotropic 

materials; λ  and µ, known as Lame’s constants.  

 

 

Equation 9. Isotropic stress-strain equations. 

2. Non-Normal, Multi-Layered, Unattenuated Case  

For the case of a planar, liquid-solid interface, normal and tangential components 

of stress must be equal at that interface. However, since fluids support shear stress to a 

negligible degree, the tangential components of stress at the boundary are set to zero 

 
T1= (2µ + λ)  ε 1 + λ ε2 + λ ε3  

 

T2=λ ε 1 + (2µ + λ)  ε2 + λ ε3 

 

T3= λ ε 1 + λ ε2 +(2µ + λ) ε3 

 

T4= µ ε4 

 

T5= µ ε5 

 

T6= µε6 
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while normal stress balances fluid pressure. A third boundary condition is continuity of 

the normal components of displacement at the interface. Conditions are summarized 

below: 

 

 

Table 5.  List of boundary conditions for general case of normal and non-normal 
incidence. 

For two dimensional problems that are independent of the y coordinate, one need 

only consider the x-z plane of the medium. For any angle of incidence as shown in Figure 

7, Brekhovskikh derives amplitudes of plane waves propagating through the layered 

material by repeated applications of the boundary conditions of Table 5 at every 

interface.  

 

 

Figure 7.  Wave propagation direction. 

 

z

Line of constant phase 
(wavefront) 

ϕ

x

FLUID

Layer ‘n’

 

Layer ‘n-1’ Layer ‘n-2’ 

1. Continuity of normal stress (T3 ) across the boundary 
2. Tangential stress (T5 ) of zero at the boundary.  
3. Continuity of normal displacement (u3 )  
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Brekhovskikh’s derivation at a single interface leads to a set of linear equations 

presented in matrix form in Equation 10. It is important to note that the incident wave 

propagates in the negative z direction.  

 

 

Equation 10.  Matrix form of particle velocities and stress component equations in an 
isotropic layer, n. 

A key concept used by Brekhovskikh in this multilayered scenario is that the [Sn] 

do not have a z dependence, and therefore are constant through each layer. This means 

that stress at the top of the layer can be related to the stress at the bottom of a given layer 

by elimination of this common factor.  

  

vx
n 

 

vz
n 

 

 

ωT3
n 

 

 

ωT5
n/2µ 

=  

jM cos(Pz)       - M sin(Pz)            Q sin (Qz)             -jQ cos(Qz) 
 
 
-P sin(Pz)           jPcos(Pz)           jM cos(Qz)             - M sin(Qz) 
 
 
-j K cos(Pz)     Ksin(Pz)                 2µ MQ sin(Qz)              – j2µMQ cos(Qz)  
 
 
MPsin(Pz)  -jMP cos (Pz)      j ((Q2-M2)/2) cos(Qz)         ((M2 -Q2)/2) sin(Qz) 
 
 

(φ’ +φ”)  
 
(φ’ - φ”) 

 

(ψ’ +ψ”)  
 

 

(ψ’ -ψ”) 
 

 

Or, in short form: 
 

[Tn]      =     [An] [Sn] 

where:     
Μ n = κ n sin γ n   =  k n sin ϕ n = k n+1 sin ϕ n+1 
Pn =  kn cos ϕn 
Q n =  κn cos γ n   
K  = (M2λ+P2λ+2µP2) 
cL  = Compressional wave speed 
cG = Shear wave speed 

kn  = ω /cL in layer ‘n’ 

κn  = ω /cG in layer ‘n’ 

γ n  =  Shear wave propagation angle in layer ‘n’ 

 ϕn =  Compressional wave propagation angle in 
layer ‘n’ 

φ  = Compressional velocity 
potential 
φ’ = Incident 
φ’’= Reflected  
ψ  = Shear velocity potential 
ψ’ = Incident  
ψ’’= Reflected  
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Equation 11.  Continuity of displacements and tractions at the boundary. 

Invertability of the matrix in Equation 10 is assumed in establishing a relationship 

between layers n and n-1, as below.  

 

 

Equation 12.  Matrix form of recurrence relationship between isotropic layers n and 1. 

The Λ matrix in Equation 12 is a 4x4 matrix that is the product of [Σn-1]…. [Σ1]. 

Finally, for the special case of isotropic material bounded by water, Brekhovskikh derives 

a pressure ratio, which can be related to the intensity transmission coefficient, which in 

turn can subsequently be used to determine insertion loss at both normal and non-normal 

angles of incidence.  

[Tn-1]z=top of layer n-1 = [Tn] z=bottom of layer n 
[Sn]z=anywhere in layer n = [Sn] z=bottom or top of layer n 

[Tn
z=bottom of layer n] = [Tn-1

z=top of layer n-1 ] 
  

[Tn-1
z=top of layer n-1] =   [An-1

z=top of layer n-1] [Sn-1] , therefore 
  
[Tn

z=bottom of layer n ] =   [An-1
z=top of layer n-1] [Sn-1], but 

 
[Tn-1

z=bottom of layer n-1] =   [An-1
z=bottom of layer n-1] [Sn-1], so 

  
[An-1

z=bottom of layer n-1]-1 [Tn-1
z=bottom of layer n-1 ] =   [Sn-1] 

  
 =>   [Tn

z=bottom of layer n ]  =   [An-1
z=top of layer n-1] [Sn-1]  

 
= [An-1

z= top of layer n-1] [An-1
 z=bottom of layer n-1]-1 [Tn-1

z=bottom of layer n-1] 
 

[Tn] = [Σn-1] [Tn-1] 
    

=> [Tn-1] = [Σn-2] [Tn-2] 
    

[Tn] = [Σn-1] [Σn-2] [Tn-2] 
 

[Tn] = [Σn-1] [Σn-2] …..[Σ1] [T1] 
 

=> [Tn ] = [Λ] [T1] 
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Equation 13. Insertion loss using intensity transmission coefficient for multi-layered, 
water bound, isotropic material at normal and non-normal angles of incidence. 

3. Non-Normal, Multi-Layer, Attenuated Case  

Equation 5 and Equation 13 neglect attenuation of the pressure wave as it 

propagates through the layer. Brekhovskikh’s approach simply multiplies potentials by 

decay terms, such as exp(-ξz), where ξ is the attenuation term and z is the spatial 

variable. The shear and compressional decay terms, ξG and ξL , are defined by Capps [12] 

below in terms of the loss properties in the material, characterized by the ‘tan δ’ metric.  

 

 

Equation 14.  Compression and shear decay term definition. 

Since the incident wave is traveling in the negative z direction, the resulting wave 

propagation takes the following form, using the variables from Equation 10:  

 

Insertion Loss = 10 log10 [1 / Γ ] 
 
 

 Γ = [ -2 Pn ω2ρ1 / (H1+H2) ]2 
 
where : 
ρ1   = Density in layer 1 (seawater)    ρ1   = Density in layer n 
H1 = Pn [ P1Y3  −   ω ρ1 ω Y4 ]        Η2 = -ρnω2 [P1 Y1   −   ω ρ1 ω Y2 ] 
Y1 = [(-1/Λ41 )   Λ42  Λ21+   Λ22 ]      Y2 = [(-1/Λ41 )   Λ43  Λ21 +  Λ23] 
Y3 = [(-1/Λ41 )   Λ42  Λ31+  Λ32 ]       Y4 = [(-1/Λ41 )   Λ43  Λ31 +  Λ33] 

ξG = SQRT [ ρω2 (( 1 + tan2 δG )½ - 1) / 2 µ' ( 1 + tan2 δG ) ] 
 
ξL = SQRT [ ρω2 (( 1 + tan2 δL )½ - 1) / 2L’( 1 + tan2 δL ) ] 
 
L = (λ + 2µ )  
L’= Real part of L 
L”= Loss part of L 
tan δL = loss tangent associated with L = L”/L’ 
tan δG = loss tangent associated with µ = µ”/µ’ 
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Equation 15.  Velocity potentials equation for the attenuated wave case. 

When attenuation exists, a modified set of equations, based on the same approach 

used to develop Equation 10, can be derived. Equation 16 displays these modified 

equations, based on the modified potentials of Equation 15, in matrix form. It can be seen 

that the potential sums shown in Equation 10 are replaced by individual potentials for the 

upward and downward traveling compressional and shear waves, scaled by decay terms.  

 

 

 

 

  φ = [φ’ exp (jPz -ξL (d−z)) + φ” exp (- jPz-ξL z)] exp (jM-ξL x) 
 
  φ = [φ’ exp (jPa z -ξL d) + φ” exp (- jPa z)] exp (jMa x) 
 
where: Pa = P -jξL ,  Ma = M -jξL  
 
 ψ = [ψ’ exp (jQz -ξG (d−z)) + ψ” exp (- jQz-ξG z)] exp (jM-ξG x ) 
 
 ψ = [ψ’ exp (jQa z -ξG d) + ψ” exp (- jQa z)] exp (jMa x ) 
 
where:   Qa = Q -jξ G  
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Equation 16.  Matrix form of linear equations with upward and downward potentials 
separated. 

A recurrence relationship similar to that described in Equation 12 also exists for 

the attenuated case.  

 
 

vx
 

 

vz
 

 

 

ωT3
 

 

 

ωT5 

=  j 

 Ma e1                        Ma e2                - Qa e3                      Qa e4   
 
 
 Pa e1                          -Pa e2                  Ma e3                      Ma e4    
 
 
 -Ka e1                        -Ka e2             -2µ MQa e3                      2µMQa e4  
 
 
-2µPa Ma e1       2µPa Ma e2      -µ (Ma2 -Qa2) e3           - µ (Ma2 -Qa2) e4      
 

φ’  
 
φ” 

 

ψ’  
 

 

ψ” 
 

 

where:      
 Ka = (Ma2λ+Pa2λ+2µPa2) 

e1 = exp ( jPaz-ξLd) 
e2 = exp (-jPaz) 
e3 = exp ( jQaz-ξGd) 
e4 = exp (-jQaz) 
 

Or, in short form: 
 

[T]      =    j [A2] [S2] 
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Equation 17.  Matrix form of recurrence relationship between isotropic layers n and 1 
for the attenuated case. 

The intensity transmission coefficient can be determined using a similar approach, 

modified to account for the matrix differences between Equation 10 and Equation 15, to 

that used by Brekovskikh in the non-attenuating case referenced above. Again, the 

insertion loss metric is related to the transmission coefficient. The final equation is shown 

below. 

 
 
 
 
 

[Tn-1
 z=bottom of layer n-1 ] = [A2n-1

z= bottom of layer n-1 ] [S2n-1] 
 

[S2n-1] = [A2n-1
z= bottom of layer n-1 ] -1[Tn-1

 z=bottom of layer n-1 ] 
 

[Tn-1
 z=top of layer n-1 ] = [A2n-1

z=top of layer n-1 ] [S2n-1] 
 

[Tn-1
 z=top of layer n-1 ] = 

 
[A2n-1

z=top of layer n-1 ] [A2n-1
z= bottom of layer n-1 ] -1[Tn-1

 z=bottom of layer n-1 ] 
 

[Tn
 z=bottom of layer n ] = [Tn-1

 z=top of layer n-1 ] 
 

[Tn
 z=bottom of layer n ] = 

 
[A2n-1

z=top of layer n-1 ] [A2n-1
z= bottom of layer n-1 ] -1[Tn-1

 z=bottom of layer n-1 ] 
 

[Tn
 z=bottom of layer n ] = [Σn-1]  [Tn-1

 z=bottom of layer n-1 ] 
  

 [T n-1] =   [Σn-2] [Tn-2] 
 

[T n] =   [Σn-1] [Σn-2] …..[Σ1] [T1] 
 

=> [Tn] =   [Λ] [T1] 
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Equation 18.  Insertion loss with attenuation using intensity transmission coefficient for 
multi-layered, water bound, isotropic material at normal and non-normal angles of 

incidence.  

Since literature values for λ are uncommon, it can be calculated using Young’s 

modulus (E) and µ. In turn, µ is found given E and ν according to Equation 19 from 

Loeser [13]. Due to the lack of experimental data, a simplification is made concerning 

Poisson’s ratio that assumes it is a real number: ν” =0 so ν* = ν’. 

 

 

Equation 19. Relationship between shear modulus, Young’s modulus and Poisson’s 
ratio for the case of ν” = 0. 

 

 

 

 

Insertion Loss = 10 log10 [1 / Γ a  ] 
 
 

 Γa = [ -2 Pa,n ρ1 Ka,n /ρn (H3 + H4) ]2 
 
where : 
Ka,n = Ka in layer n 
Pa,n = Pa in layer n 
Pa,1 = Pa in layer 1 
H3  = -Ka,n [-Y1i Pa,1 + ρ1ω2Y2i ]               H4 = - Pa,n [-Y3i Pa,1 + ρ1ω2Y4i ]           
Y1i = [(-1/Λi41  ) Λi 42  Λi 21+   Λi 22 ]           Y2i = [(-1/Λi 41 )   Λ i 43  Λ i 21 +  Λ i 23] 
Y3i = [(-1/Λi 41 ) Λi 42  Λ i 31+  Λi 32 ]           Y4i = [(-1/Λi 41 )   Λ i 43  Λ i 31 +  Λ i 33] 

  µ* = E* / 2 (1+ν*) 
  µ* = E* / 2 (1+ν’) 

µ’ ( 1 + j tan δG ) = E’ (1+ j tan δE ) / 2 (1+ν’) 
                            → ( tan δG ) = ( tan δE )  
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Using Equation 19 and the definition of λ in terms of E and ν shown in Loeser, λ∗ 

can be calculated as follows:  

 

 

Equation 20. Relationship between compressional modulus, Young’s modulus and 
Poisson’s ratio for the case of ν” = 0. 

Since signal decay is primarily associated with the materials’ elastic moduli, 

introduction of complex terms affects the magnitudes of propagation speeds in the 

material. Capps defines these speeds using loss tangents as follows:  

 

 

Equation 21.  Sound speed equations for lossy material. 

Using Equation 19 and Equation 20, Equation 14 and Equation 21 can be 

rewritten in terms of complex Young’s and Poisson’s moduli E and ν. 

 

Equation 22.  Compressional and shear sound speeds and decay terms expressed as 
functions of E and ν. 

                 λ* = ν'E* / (1+ν’)(1-2ν’) 
 2µ* = E* / (1+ν’) 

                 (λ∗ + 2µ∗ ) = (E* / (1+ν’)) [ν'/ (1-2ν’) + 1] 

cG = SQRT [ 2µ’( 1 + tan2 δG ) / ρ( ( 1 + tan2 δG )½ + 1) ] 
 
cL = SQRT [ 2L’( 1 + tan2 δL ) / ρ( ( 1 + tan2 δL )½ + 1) ] 
 

cL = SQRT ( [2 (E’/ (1+ν’) [ν'/ (1-2ν’) + 1])/ ρ] [TD/(TD1/2 +1)] ) 
cG = SQRT ( [2/(E’/ 2 (1+ν’)) ρ]  [TD/(TD1/2 +1)] ) 
 
ξG = SQRT( [ ρω2 /2 (E’/ 2 (1+ν’))] [(TD1/2 -1)/TD ] ) 
ξL = SQRT( [ ρω2 /2(E’/ (1+ν’) [ν'/ (1-2ν’) + 1] )] [(TD1/2 -1)/TD ] ) 
 
TD =( 1 + tan2 δE )  
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III. MEASUREMENTS AND MODELS 

A. MEASUREMENTS 

To verify the theoretical models discussed in previous sections, experimental 

measurements were made on panels of several materials listed in Table 2. These 

measurements were made at several different open water facilities using identical 

measurement protocols.  

Insertion loss was calculated according to Equation 3 using sound pressure level 

(SPL) measurements. An incident signal was produced by a calibrated reference standard 

projector, with and without a panel in the acoustic signal path between the projector and a 

calibrated reference standard hydrophone. The rotator shaft is used to position the panel 

such that a plane wave from the projector strikes the panel at varying angles of incidence. 

The setup is shown below in Figure 8.  

 

 

Figure 8.  Acoustic Measurement Setup 

Water temp ~ 18°C 

Measurement 
System 

Hydrophone Projector 

Retractable/Rotateable 
Shaft 

        R2 =1..975m 

Panel  

2m 

R1 = 2m 
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In practice, two issues must be addressed to assure test setup and panel sizes are 

sufficient to address geometric influences affecting measurement quality. The first of 

these is the fact that the wavefront incident on the panel is not planar, but spherical. The 

issue can be mitigated by applying the criterion that the maximum dimension of the 

hydrophone used to measure the signal be such that the incident signal at the edge and the 

center of the hydrophone be no more than 30° out of phase, or λacoustic/12. This 

requirement forces a maximum hydrophone length (L1,MAX ) defined by Equation 23.  

 

 

Equation 23.  Minimum panel length for plane wave assumption. 

The second geometric issue is an effect called ‘edge diffraction’ [3]. Using  Figure 8 and  
Figure 9, R3 = R1- R2 . The distance from the edge of the panel to the center of the 

hydrophone is shown in  

Figure 9 as R3’. The panel must be large enough such that the difference between 

R3’ and R3 is large enough to allow a signal to be sampled before edge diffraction signal 

arrives. Since the reference hydrophone requires 2-3 cycles to reach steady state, this 

criterion is set at four wavelengths (minimum) to allow one full cycle to sample.  

 

 
 
 
 
 
 
 
 
       ∆1  = R’1 – R1 = λacoustic/12  
 
L1,MAX = 2 √( (R’1)2-R1

2 ) = 2 √( (∆1 + R1)2-R1
2 )  

L1,MAX/2 

R1 

R’1 
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Figure 9.  Minimum panel to address edge diffraction. 

Figure 10 shows that hydrophone length should not be larger than 0.09m (9cm). 

The H-52 type hydrophone (Length = 5cm) is the largest used in these measurements and 

easily meets the criteria. The line marked ‘L2’ in Figure 10 represents the minimum 

panel length required as a function of frequency. The largest panel size required is ~.29m 

(11 inches) at the low end of the band.  
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Figure 10.  Minimum required panel length L2 and maximum hydrophone length L1. 

℄ Hydrophone 

R3’ 

R3 
L2 

R3’-R3 ≥ 4 wavelengths = ∆2 
 
R3’= R3 + ∆2 
 
L2 = 2 √ (( ∆2+ R3 )2 - R3

2 )  
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Both transducer and hydrophone have accuracies within +/- 0.1dB, in ideal 

conditions. Two measurements are required to establish the insertion loss value. 

Therefore, total inaccuracies in measured data could be as large as +/- 0.4dB. 

B. MODEL  

Equation 5 , Equation 13 and Equation 18 , derived in the previous section for 

isotropic layers bounded by water, represent three levels of insertion loss models with 

increasing levels of complexity; Equation 5 for the simplest case of normal incidence/ no 

attenuation, Equation 13 for non-normal incidence without attenuation, and Equation 18 

for non-normal incidence that includes attenuation. Each, hereafter referred to as Model 

1, 2, and 3, respectively, can be used as the basis equation for an insertion loss model that 

require user input of the following variables:  

1. Number of layers 

2. Angle of Incidence (Equation 13 and Equation 18) 

And for each layer: 

3. Young’s Modulus (E)  

4. Poisson’s ratio (ν ) 

5. Young’s tan δ (Equation 18) 

6. Layer thickness  

Although it is not readily obvious, a quick comparison between methods for the 

case of a single layer of non-attenuating steel that is one cm thick, with a normally 

incident acoustic plane wave, produces identical results. The MATLAB code for model 3 

is included in the Appendix. 

To further validate Model 3, it is also checked against cases of single layered, 

isotropic materials at various incidence angles and levels of attenuation. Material 

property inputs used to test the model are listed in Table 6. 

Density and Poisson’s ratios are found in multiple sources for the items listed in 

the table below. The dynamic properties, Young’s (Storage) modulus and tan δ, vary 

significantly with temperature and frequency. Little data for the specific materials and 

frequency ranges used in this thesis can be found in the literature. In the case of 
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polyurethane, Capps [12] provides tan δ measurements versus a scaled frequency across a 

broad frequency band. The scaling coefficient accomplishes a tan δ shift at temperatures 

away from the reference temperature. Specific moduli and tan δ measurements on Noryl 

plastic were available [14]. On the other hand, nylon 6 moduli and tan δ values were 

estimated from available data at frequencies outside the range of the thesis bounds.  

 

Material Density(g/cc) Young’s 
Modulus 

(GPa) 

Tan δ 
 

Poisson’s 
Ratio 

(ν)  
Plastic2 
(Noryl EN-265) 

1.08 2.62 0.029 0.38 

Plastic3  
(Cast Nylon 6) 

1.12 4.14 0.023 0.38  

Steel (A36) 7.7  207 ~0 0.29 
Polyurethane 
(PR 1574) 

1.03 
 

0.200 0.150 0.49 

Table 6.  Physical properties for single layer, isotropic materials used in the test 
cases. 

C. NORMAL INCIDENCE MODELS AND MEASUREMENTS 

In Figure 11 and Figure 12, the model results and the measured data are plotted 

for the two plastic material cases subject to normal incidence acoustic waves. The 

agreement between the model and the measured data is good. The fact that the measured 

data shows a sinusoidal shape of a similar period as the model data indicates the sound 

speed and density estimates are close to the actual. The attenuation values are also 

validated, based on the similar linear ‘DC bias’ evident in both the model and measured 

cases.  

 
 

                                                 
2 Noryl EN-265 plastic dynamic properties determined from sample measurements at various 

temperatures [14]. 
3 Cast Nylon 6 dynamic properties are estimates. Modulus is estimated from sound speed 

measurements made by Underwater Sound Reference Division (USRD) along with density and Poisson’s 
ratio. Tan δ value estimate is made using ultrasonic (2.25MHz) measurements.  
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Figure 11.  Insertion loss of 1.905cm cast Nylon 6 panel at normal incidence.  
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Figure 12.  Insertion loss of 2.54cm Noryl EN-265 panel at normal incidence. 

Normal incidence steel plate measurements shown in Figure 13 indicate that, 

although there is fluctuation in the measurement, the model to measurement match is 

good. This is evident when the following is considered. When insertion loss is high, as in 

this case of > 17dB, the received signal has an increased susceptibility to measurement 

system noise, both electronic and acoustic. Electronic noise is related to measurement 
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system equipment and signal to noise ratio. Acoustic ‘noise’ is the result of small, 

otherwise insignificant, reflections from various scatterers located, unavoidably, within 

such range as to coherently  sum with the incident signal. In this case of the steel plate, 

the periodicity of the ripple in Figure 13 suggests the measured signal contained a 

reflection from a nearby (0.05m) scatterer, likely the hydrophone fixture. If the steel 

panel data points are least squares fit to a 3rd order polynomial, the agreement between 

measurements and model greatly improves, as shown in Figure 14. 
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Figure 13.  Insertion loss of 1.0cm A36 carbon steel plate at normal incidence. 
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Figure 14.  Insertion loss of 1.0cm A36 carbon steel plate at normal incidence with 
measured data points fit with a 3rd order polynomial curve. 

Finally, the case of a polyurethane panel is presented below in Figure 15. Note 

that the insertion loss level is very low, relative to the steel plate case. The measured data 

agree very well with model 1, which does not include an estimate on attenuation in the 

material. Model 3, on the other hand, does include the effect of wave attenuation through 

the material based on an attenuation value given by Capps [12]. Since model 1 and model 

3 inputs, with the exception of attenuation, are identical, its clear that the disagreement 

between model 3 and the measured data is based on the attenuation input. If the 

attenuation value is lowered by an order of magnitude, agreement between model 3, 

model 1 and the measured data greatly improves, as demonstrated by Figure 16. As 

mentioned previously, there is scarce measured attenuation data in the literature for the 

specific frequency range and material used in this thesis. As such, the attenuation input 

given by Capps and used for the polyurethane panel model could not be verified by a 

second literature source and its accuracy, based on the measurements done here, is 

suspect. 
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Figure 15.  Insertion loss of 0.635cm thick PR-1574 panel at normal incidence. 
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Figure 16.  Insertion loss of 0.635 cm thick PR-1574 panel with low (0.015) loss 
tangent. 
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D. NON-NORMAL INCIDENCE MODELS AND MEASUREMENTS 

Equation 13 (model 3) is capable of calculating insertion loss for non-normal 

incidence cases as well. As in section C above, insertion loss measurements were made 

on panels of several material types at prescribed incidence angles, and are shown below 

compared to experimental measurements.  

The case of the Nylon panel at non-normal incidence is shown in Figure 17. An 

insertion loss peak at 160 kHz in Figure 17 is significantly overestimated by the model, 

indicating that the model input values are still not exact. Since the normal incidence 

model-to-measurement match was good and hence validated the values used for 

longitudinal sound speed and density, this spike in the insertion loss data likely indicates 

the Nylon shear estimates require update. 
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Figure 17.  Insertion loss of 1.905cm thick Cast Nylon 6 panel at 15° incidence. 

The case of a steel plate at non-normal incidence is shown in Figure 18. Despite 

measurement fluctuation similar to that seen in the normal incidence case, and attributed 

to the same cause, the match between the model and the measured data is considered 

good, indicating shear estimates are validated.  
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Figure 18.  Insertion loss of 1.0cm thick A36 carbon steel panel at 20° incidence. 

Once again, the polyurethane panel measurement results, plotted in Figure 19, 

have the largest deviation from model 3. This non-normal incidence case shows results 

similar to the normal incidence case and further supports the hypothesis of an inaccurate 

attenuation input.  
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Figure 19.  Insertion loss of 0.635cm thick PR1574 panel at 30° incidence. 
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IV.  COMMENTS AND DISCUSSION 

A. DESIGN IMPROVEMENT 

Although model 3 is valid for multi-layered materials, no actual panels of such are 

available for test and subsequent model comparison. However, a comparison of several 

layered models provides insight into the effect of each layer. 

A benefit of using a layered approach is the ability to determine an effective 

bending stiffness. Most acoustic windows are secured to the hull structure such that the 

window can be considered a plate with fixed edges. Structural loads carried by the 

window limit the resulting bending displacement criteria to ensure geometric stability and 

equipment clearances are maintained. Displacement and bending rigidity, D, are 

classically related by the plate equation given in Equation 24.  

 

 

Equation 24.  Classical (Kirchoff) plate bending equation 

 

 

Equation 25.  Bending rigidity equation for plates 

Equation 25 is based on the work by Jones [15] which uses Kirchoff’s thin plate 

assumptions, generally considered to be satisfied for plates with lateral dimensions at 

p = ∇2D ∇2w 
D = bending rigidity 
w = displacement 
p = pressure load 

                N 

D = 1/3    Σ   (Ek / (1-νk
2)) (zk

3 - zk-1
3) 

               k=1 
k = Layer number 
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least 20 times the thickness.4 The bending rigidity of a plate with n layers can be broken 

into n separate integrals and summed to determine D for the composite section. For 

example, if PR-1574 polyurethane, 1.905cm thick, is sandwiched between two .0635cm 

thick Aluminum plates, the effective bending rigidity is calculated by breaking the 

integral into three parts, D1-D3, and summing the terms.  

For this case, as shown in Table 7 using the inputs listed in Table 8, D for the 

composite section increases by a factor of ~50 relative to a single layer of equal thickness 

of PR-1574.  

 
D1 4834.00
D2 151.63
D3 4834.00
DTotal for Composite Section  9819.63
DConstant section  184.02

Table 7.  Bending rigidity for an ALUM-PR1574-ALUM composite section and a 
PR1574 constant section for a given thickness. 

 
Material Density 

(g/cc) 
Young’s 
Modulus 

(GPa) 

Tan δ 
 

Layer 
Thickness 

(cm) 

Poisson’s 
Ratio 

Layer 1  2.7 70 .002 .0635 0.33 
Layer 2 1.03 0.20 .1 1.905 0.49 
Layer 3 2.7 70 .002 .0635 0.33 

Table 8.  Layered material 1:ALUM-PR1574-ALUM. 

The discussion above highlights the structural benefits to a layered multi-media 

approach. The acoustic performance can be evaluated using Table 8 inputs for a 3 layered 

system. The insertion loss is calculated for various angles using model 3 and shown in 

Figure 20.  

 

                                                 
4 Plates not meeting the dimension criteria and/or those with relatively low shear rigidity require 

‘thick’ plate analysis to determine bending displacements. See Reissner [16]. 
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Figure 20.  Model 3 insertion loss prediction of ALUM-PR1574-ALUM 'sandwich' 
composite with properties as shown in Table 8.  

Insertion loss of the ALUM-PR1574-ALUM composite section shown in Figure 

20 increases across the band to exceed the benchmark of 2dB at only a small portion of 

the high end of the band for the angles shown. A contour plot of the same data, shown in 

Figure 21, provides a better display of the data and reveals that this benchmark is also 

violated in a larger part of the frequency band at ~ 16° angle of incidence. The sharp 

increase in insertion loss at this angle can be shifted in angle by modifying the modulus 

of layers 1 and 3, as evidenced in Figure 22 where the modulus is lowered by ~20%. 

Lowering layer 1 and 3 modulus by a full order of magnitude (to 7GPa) results in the 

complete elimination of the insertion loss peak, as seen in Figure 23. This suggests that 

the sharp differences in modulus, and hence acoustic impedance, between the outer layers 

(1 and 3) and the core layer (layer 2) produce internal reflections that interfere with the 

sound transmission through the material.     
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Figure 21.  Contour plot of insertion loss (dB) prediction of ALUM-PR1574-ALUM 
'sandwich' composite with properties as shown in Table 8. 
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Figure 22.  Contour plot of insertion loss (dB) prediction of ALUM-PR1574-ALUM 
'sandwich' composite with properties as shown in Table 8, but with the Young’s 

modulus of layers 1 & 3 changed to from 70 to 55GPa. 
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Figure 23.  Contour plot of insertion loss (dB) prediction of ALUM-PR1574-ALUM 
'sandwich' composite with properties as shown in Table 8, but with the Young’s 

modulus of layers 1 & 3 changed to from 70 to 7GPa. 

If the outer layer material is switched from Aluminum to A36 steel, with 

properties shown in Table 9, D increases by a factor of ~150, relative to a single 

equivalent thickness layer of PR-1574. Insertion loss values, however, increase to 

unacceptable levels, as shown in Figure 24. 
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Material Density 
(g/cc) 

Young’s 
Modulus 

(GPa) 

Tan δ 
 

Layer 
Thickness 

(cm) 

Poisson’s 
Ratio 

Layer 1  7.7 207 0 .0635 0.29 
Layer 2 1.03 0.20 .1 1.905 0.49 
Layer 3 7.7 207 0 .0635 0.29 

Table 9.  Layered material 2: Steel-PR1574-Steel 

 

Figure 24.  Contour plot of insertion loss (dB) prediction of STEEL-PR1574-STEEL 
'sandwich' composite with properties as shown in Table 9. 

These two examples demonstrate that a layered system can be designed to offer a 

structurally improved product, relative to the mono-layer design, with acceptable acoustic 

performance. In addition to improvement in bending rigidity, designs which use high 

strength outer layers offer improved performance relative to environmental loads as well. 

For example, a system of polyurethane sandwiched between metallic layers (i.e., steel, 

Alum) offers greatly reduced water absorption by the polyurethane, the ability to accept 
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off-the-shelf (OTS) surface treatments for fouling prevention, greater resistance to in-

service wear/tear, greatly improved chemical resistance and reduced design restrictions in 

mounting schemes.  

B. FUTURE WORK 

The next logical step in this study is to improve the quality of model inputs for the 

layer design presented in Table 8 and to subsequently, upon acceptable model results, 

manufacture a layered panel according to that design and test for both acoustic and 

structural performance. This step results in model verification of a layered system after 

which the model can be used with confidence to optimize performance for application in 

specific cases. 

It is important to note that the model does not consider the compatibility of layers 

with each other. Rather, it assumes perfect bonding between layers. For example, the case 

of PR-1574 and Aluminum is known to be a pair of materials that can be bonded together 

with little difficulty. This may not be the case for other combinations of high strength 

outer layers and polyurethane or rubber middle layers. Additionally, there likely exists a 

practical limit on minimum material thickness. 
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APPENDIX.  MATLAB CODE  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% This program models the transmission of sound thru a seawater bound % 
%%%% section containing layer(s) of isotropic material and calculates %%% 
%%%% a transmission coefficient and an insertion loss as a function of %% 
%%%% frequency and angle of incidence . 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
%%%First Input is the number of layers 
numlayer= input (' Enter the number of layers in the solid material:      '); 
numfreqsteps= 200; %%%sets the resolution of the frequency...this is the number of rows in the 
IL matrix 
numanglesteps= 200;%%%sets the resolution of the angle ...this is the number of columns in the 
IL matrix 
angleinc=.00349; 
csw=1500; %%% Speed of sound in seawater 
cswT=0 ;  %%% Shear sound speed in seawater  
  
  
%%%Units used throughout are Kilograms,Meters, seconds,  
  
  
%%%%%%%%%INPUTS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
for n=1:numlayer 
  
Ein(n)=input ([' Enter Tensile storage modulus in GPa units for layer #',num2str(n),':    ']); 
E(n)=Ein(n).*1e9;  
EtanD(n)= input ([' Enter Tensile tan delta for layer #',num2str(n),':    ']); 
Ei(n)=E(n)*(1+(j*EtanD(n)));  
   
v(n)=input ([' Enter Poisson ratio for layer #',num2str(n),':    ']); 
   
    
rhoi(n)=input ([' Enter Density in g/cc for layer # ', num2str(n),':  ']); 
rho(n)=rhoi(n).*1000; 
   
   
thki=input ([' Enter thickness in cm for layer # ', num2str(n),':   ']); 
thk(n)= thki./100; 
  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%% START CALCULATIONS LOOP 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for t=1:numanglesteps 
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  anglei(t)=angleinc.*t; 
  deg(t)=anglei(t)*57.3;%%%1 rad ~=57.3 degrees 
   
  for u=1:numfreqsteps; 
    frequency(u)= 50000+(u.* 200000./(numfreqsteps)); 
    w= 2.*pi.*frequency(u); 
    csw=1500;  
    cswT=0 ;  
  
    for n=1:numlayer 
     
       
      Pscale(n)= v(n)./( (1+v(n)).*(1-(2*v(n)))); 
      lambdai(n) = Pscale(n).*Ei(n); %%%%Lame's constant 
      lambda(n)=real(lambdai(n)); 
      Pscale2(n)=(1./(1+v(n))).* ((v(n)/(1-(2.*v(n))))+ 1); 
      SpeedtermLi(n)=Pscale2(n).*Ei(n); 
       
      %%%%%%Calculate the tan d for the compressional wave %%%%% 
      LtanD(n)= imag(SpeedtermLi(n))/real(SpeedtermLi(n)); 
      %% The below terms are used in several locations %%%% 
      TD = 1 + ((EtanD(n))^2); 
      TD1=sqrt(TD); 
         
      %%%%% Calculate the effective Speedterm (modulus) for the 
      %%%%% compressional wave using the undamped modulus and  
      %%%% the Young' loss tangent%%%%%% 
      SpeedtermL(n)=2.*real(SpeedtermLi(n)).*(TD/(TD1+1)); 
      SpeedL(n)= sqrt((SpeedtermL(n))./rho(n));  
      XciL(n)=sqrt( (rho(n)*(w^2)/(2*real(SpeedtermLi(n)))) * ((TD1-1)/TD) );  
       
      %%%%%Calculate the effective shear wave speed using the 
      %%%%%Young's modulus and poisson's ratio  
      Pscale3(n)= 1./(2.*(1+v(n))); 
      Gi(n)=Pscale3(n).*Ei(n); 
      SpeedtermT(n) =(2*Gi(n))* (TD/(TD1+ 1)); 
      SpeedT(n)= sqrt(SpeedtermT(n)./rho(n)); 
      XciG(n)=XciL(n); %% Shear loss = Comp loss = Young's loss 
               %% due to simplification made in Eq 17 
        
  
       k(n)= (w./SpeedL(n));  
       kappa(n)= (w./SpeedT(n)); 
       
      if n>1 %%%% If there is more than one layer %%% 
        angle(n)=asin (SpeedL(n).*Snell(n-1)); 
        Snell(n)=sin(angle(n))./SpeedL(n); 
        angleT(n)= asin ( SpeedT(n).*Snell(n)); 
      else 
        Snell1=(sin(anglei(t)))./csw; 
        angle(n)=asin (SpeedL(n).*Snell1); 
        Snell(n)=(sin(angle(n)))./SpeedL(n); 
        angleT(n)= asin ( SpeedT(n).*Snell(n)); 
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      end 
       
      M(n)=(k(n).*sin(angle(n)))-(j*XciL(n)); 
      Pa(n)=(k(n).*cos(angle(n)))-(j*XciL(n)); 
      Qa(n)=(kappa(n).*cos(angleT(n)))-(j*XciG(n)); 
   
       
      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
%%%%%%   Matrix 1 = Potential state at z= thickness  
%%%%%%%%  NOTE: z is measured in the direction opposite to the incident 
%%%%%%%%  propagation  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
      z=thk(n); 
      e1=exp((j*Pa(n)*z)-(XciL(n)*thk(n))); 
      e2=exp(-j*Pa(n)*z); 
      e3=exp((j*Qa(n)*z)-(XciL(n)*thk(n))); 
      e4=exp(-j*Qa(n)*z); 
       
 Kaya(n)=((((M(n)).^2)+((Pa(n)).^2)).*lambdai(n))+(2.*Gi(n).*((Pa(n)).^2)); 
       
      A(1,1,n)=j*M(n).*e1; 
      A(1,2,n)=j*M(n).*e2; 
      A(1,3,n)=-j*Qa(n).*e3; 
      A(1,4,n)= j*Qa(n).*e4; 
  
      A(2,1,n)= j*Pa(n).* e1; 
      A(2,2,n)= -j*Pa(n).* e2; 
      A(2,3,n)= j* M(n).* e3; 
      A(2,4,n)= j* M(n).* e4; 
  
      A(3,1,n)=-j*Kaya(n).*e1; 
      A(3,2,n)=-j*Kaya(n).*e2; 
      A(3,3,n)=-j*2.*Gi(n).*M(n).*Qa(n).*e3; 
      A(3,4,n)=j*2.*Gi(n).*M(n).*Qa(n).*e4; 
  
      Q2=(Qa(n)).^2; 
      M2=(M(n)).^2; 
      A(4,1,n)=-j*2*Gi(n).*M(n).*Pa(n).*e1; 
      A(4,2,n)= j*2*Gi(n).*M(n).*Pa(n).*e2; 
      A(4,3,n)=-j*Gi(n).*(M2-Q2).*e3; 
      A(4,4,n)=-j*Gi(n).*(M2-Q2).*e4; 
       
       
       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%% Matrix 2 = Potentials state at z=0 in the layer 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 



 48

      z=0; 
      e1=exp((j*Pa(n)*z)-(XciL(n)*thk(n))); 
      e2=exp(-j*Pa(n)*z); 
      e3=exp((j*Qa(n)*z)-(XciL(n)*thk(n))); 
      e4=exp(-j*Qa(n)*z); 
      
       
Kaya(n)=((((M(n)).^2)+((Pa(n)).^2)).*lambdai(n))+(2.*Gi(n).*((Pa(n)).^2)); 
       
      A1(1,1,n)=j*M(n).*e1; 
      A1(1,2,n)=j*M(n).*e2; 
      A1(1,3,n)=-j*Qa(n).*e3; 
      A1(1,4,n)= j*Qa(n).*e4; 
  
      A1(2,1,n)= j*Pa(n).* e1; 
      A1(2,2,n)= -j*Pa(n).* e2; 
      A1(2,3,n)= j* M(n).* e3; 
      A1(2,4,n)= j* M(n).* e4; 
  
      A1(3,1,n)=-j*Kaya(n).*e1; 
      A1(3,2,n)=-j*Kaya(n).*e2; 
      A1(3,3,n)=-j*2.*Gi(n).*M(n).*Qa(n).*e3; 
      A1(3,4,n)=j*2.*Gi(n).*M(n).*Qa(n).*e4; 
  
      Q2=(Qa(n)).^2; 
      M2=(M(n)).^2; 
      A1(4,1,n)=-j*2*Gi(n).*M(n).*Pa(n).*e1; 
      A1(4,2,n)= j*2*Gi(n).*M(n).*Pa(n).*e2; 
      A1(4,3,n)=-j*Gi(n).*(M2-Q2).*e3; 
      A1(4,4,n)=-j*Gi(n).*(M2-Q2).*e4; 
       
  
      B(:,:,n) =A(:,:,n)*inv(A1(:,:,n)); 
  
  
      if n>1 
        Bi(:,:,n)=B(:,:,n-1)*B(:,:,n); 
      else 
        Bi(:,:,n)=B(:,:,n); 
      end 
    end 
    B1=Bi; 
    B3=abs(B1); 
    Y1i=(((-1./B1(4,1)).*B1(4,2).*B1(2,1))+B1(2,2)); 
    Y2i=(((-1./B1(4,1)).*B1(4,3).*B1(2,1))+B1(2,3)); 
    Y3i=(((-1./B1(4,1)).*B1(4,2).*B1(3,1))+B1(3,2)); 
    Y4i=(((-1./B1(4,1)).*B1(4,3).*B1(3,1))+B1(3,3)); 
  
    Pn= (w/csw).*cos(anglei(t));%%%Pn in the first water layer 
    P1= (w/csw).*cos(asin (csw.*Snell(numlayer)));% P1 in last sw layer  
    Mn= (w/csw).*sin(anglei(t));%%%Mn in the first water layer 
    rhon=1000; 
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    rho1=1000; 
    lambdan =rhon*(csw.^2); 
    Kayn=((Mn.^2)+ (Pn.^2)).*lambdan; 
     
    %%%Note: Kayn is Kay for the first of the two bounding water 
    %%%layers. G is zero in water so the expression is truncated 
    %%%compared to Kaya(n) used above. Lambda is found from the sound 
    %%%speed in water. 
    H3=(-Kayn*((-Y1i.*P1)+(Y2i.*rho1*(w^2)) )); 
    H4=(  Pn*((-Y3i.*P1)+(Y4i.*rho1*(w^2)))); 
     
    Trans1 =(-2.*rho1*Pn*Kayn); 
    Trans2 =rhon.*( (H3)+ (H4)); 
  
  
                                                                                                                                                                                            
    Trans = Trans1/Trans2; 
    TransIL(u,t)=(abs(Trans)); 
    IL (u,t)=20*log10(1/TransIL(u,t)); 
  
  end 
end 
%%%%%%%%%%%%%%%%%%%%%END CALCULATIONS LOOP 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%% PLOTS %%%%%%%%%%%%%%%%%%%%%% 
 subplot(1,3,1), plot(frequency,IL) 
 subplot(1,3,2), imagesc(deg,frequency,IL) 
 subplot(1,3,3), surf(deg,frequency,IL) 
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